SIGNALS, SYSTEMS, AND TRANSFORMS

FOURTH EDITION
This page intentionally left blank
To

Taylor, Justin, Jackson, Rebecca, and Alex
Michaela, Cadence, Miriam, and Connor Duncan,
Gary, Noah, and Aden
This page intentionally left blank
CONTENTS

PREFACE xvii

1 INTRODUCTION 1

1.1 Modeling 1

1.2 Continuous-Time Physical Systems 4
 Electric Circuits, 4
 Operational Amplifier Circuits, 6
 Simple Pendulum, 9
 DC Power Supplies, 10
 Analogous Systems, 12

1.3 Samplers and Discrete-Time Physical Systems 14
 Analog-to-Digital Converter, 14
 Numerical Integration, 16
 Picture in a Picture, 17
 Compact Disks, 18
 Sampling in Telephone Systems, 19
 Data-Acquisition System, 21

1.4 MATLAB and SIMULINK 22

2 CONTINUOUS-TIME SIGNALS AND SYSTEMS 23

2.1 Transformations of Continuous-Time Signals 24
 Time Transformations, 24
 Amplitude Transformations, 30

2.2 Signal Characteristics 32
 Even and Odd Signals, 32
 Periodic Signals, 34
2.3 Common Signals in Engineering 39
2.4 Singularity Functions 45
 Unit Step Function, 45
 Unit Impulse Function, 49
2.5 Mathematical Functions for Signals 54
2.6 Continuous-Time Systems 59
 Interconnecting Systems, 61
 Feedback System, 64
2.7 Properties of Continuous-Time Systems 65
 Stability, 69
 Linearity, 74

 Summary 76
 Problems 78

3 CONTINUOUS-TIME LINEAR TIME-INVARIANT SYSTEMS 89

3.1 Impulse Representation of Continuous-Time Signals 90
3.2 Convolution for Continuous-Time LTI Systems 91
3.3 Properties of Convolution 104
3.4 Properties of Continuous-Time LTI Systems 107
 Memoryless Systems, 108
 Invertibility, 108
 Causality, 109
 Stability, 110
 Unit Step Response, 111

3.5 Differential-Equation Models 112
 Solution of Differential Equations, 114
 General Case, 116
 Relation to Physical Systems, 118
3.6 Terms in the Natural Response 119
 Stability, 120

3.7 System Response for Complex-Exponential Inputs 123
 Linearity, 123
 Complex Inputs for LTI Systems, 124
 Impulse Response, 128

3.8 Block Diagrams 129
 Direct Form I, 133
 Direct Form II, 133
 nth-Order Realizations, 133
 Practical Considerations, 135
Contents

Summary 137
Problems 139

4 FOURIER SERIES 150

4.1 Approximating Periodic Functions 151
 Periodic Functions, 152
 Approximating Periodic Functions, 152

4.2 Fourier Series 156
 Fourier Series, 157
 Fourier Coefficients, 158

4.3 Fourier Series and Frequency Spectra 161
 Frequency Spectra, 162

4.4 Properties of Fourier Series 171

4.5 System Analysis 174

4.6 Fourier Series Transformations 181
 Amplitude Transformations, 182
 Time Transformations, 184

Summary 186
Problems 187

5 THE FOURIER TRANSFORM 197

5.1 Definition of the Fourier Transform 197

5.2 Properties of the Fourier Transform 206
 Linearity, 206
 Time Scaling, 208
 Time Shifting, 211
 Time Transformation, 212
 Duality, 213
 Convolution, 216
 Frequency Shifting, 217
 Time Differentiation, 219
 Time Integration, 224
 Frequency Differentiation, 227
 Summary, 227

5.3 Fourier Transforms of Time Functions 228
 DC Level, 228
 Unit Step Function, 228
 Switched Cosine, 229
6 APPLICATIONS OF THE FOURIER TRANSFORM

6.1 Ideal Filters 274

6.2 Real Filters 281
 RC Low-Pass Filter, 282
 Butterworth Filter, 284
 Chebyschev and Elliptic Filters, 290
 Bandpass Filters, 294
 Summary, 295

6.3 Bandwidth Relationships 295

6.4 Reconstruction of Signals from Sample Data 299
 Interpolating Function, 301
 Digital-to-Analog Conversion, 303

6.5 Sinusoidal Amplitude Modulation 306
 Frequency-Division Multiplexing, 315

6.6 Pulse-Amplitude Modulation 317
 Time-Division Multiplexing, 319
 Flat-Top PAM, 321
8.3 Solution of State Equations 408
 Laplace-Transform Solution, 409
 Convolution Solution, 414
 Infinite Series Solution, 415

8.4 Properties of the State-Transition Matrix 418

8.5 Transfer Functions 420
 Stability, 422

8.6 Similarity Transformations 424
 Transformations, 424
 Properties, 430

Summary 432
Problems 434

9 DISCRETE-TIME SIGNALS AND SYSTEMS 443

9.1 Discrete-Time Signals and Systems 445
 Unit Step and Unit Impulse Functions, 447
 Equivalent Operations, 449

9.2 Transformations of Discrete-Time Signals 450
 Time Transformations, 451
 Amplitude Transformations, 456

9.3 Characteristics of Discrete-Time Signals 459
 Even and Odd Signals, 459
 Signals Periodic in \(n \), 462
 Signals Periodic in \(\Omega \), 465

9.4 Common Discrete-Time Signals 466

9.5 Discrete-Time Systems 472
 Interconnecting Systems, 473

9.6 Properties of Discrete-Time Systems 475
 Systems with Memory, 475
 Invertibility, 476
 Inverse of a System, 477
 Causality, 477
 Stability, 478
 Time Invariance, 478
 Linearity, 479

Summary 481
Problems 483
10 DISCRETE-TIME LINEAR TIME-INVARIANT SYSTEMS

10.1 Impulse Representation of Discrete-Time Signals 492

10.2 Convolution for Discrete-Time Systems 493
 Properties of Convolution, 502

10.3 Properties of Discrete-Time LTI Systems 505
 Memory, 506
 Invertibility, 506
 Causality, 506
 Stability, 507
 Unit Step Response, 509

10.4 Difference-Equation Models 510
 Difference-Equation Models, 510
 Classical Method, 512
 Solution by Iteration, 517

10.5 Terms in the Natural Response 518
 Stability, 519

10.6 Block Diagrams 521
 Two Standard Forms, 523

10.7 System Response for Complex-Exponential Inputs 527
 Linearity, 528
 Complex Inputs for LTI Systems, 528
 Stability, 533
 Sampled Signals, 533
 Impulse Response, 533

 Summary 535
 Problems 536

11 THE z-TRANSFORM

11.1 Definitions of z-Transforms 547

11.2 Examples 549
 Two z-Transforms, 549
 Digital-Filter Example, 552

11.3 z-Transforms of Functions 555
 Sinusoids, 556

11.4 z-Transform Properties 559
 Real Shifting, 559
 Initial and Final Values, 562
11.5 Additional Properties 564
 Time Scaling, 564
 Convolution in Time, 566

11.6 LTI System Applications 568
 Transfer Functions, 568
 Inverse z-Transform, 570
 Complex Poles, 573
 Causality, 575
 Stability, 575
 Invertibility, 578

11.7 Bilateral z-Transform 579
 Bilateral Transforms, 584
 Regions of Convergence, 586
 Inverse Bilateral Transforms, 586

Summary 589
Problems 590

12 FOURIER TRANSFORMS OF DISCRETE-TIME SIGNALS 599

12.1 Discrete-Time Fourier Transform 600
 z-Transform, 602

12.2 Properties of the Discrete-Time Fourier Transform 605
 Periodicity, 605
 Linearity, 606
 Time Shift, 606
 Frequency Shift, 607
 Symmetry, 608
 Time Reversal, 608
 Convolution in Time, 609
 Convolution in Frequency, 609
 Multiplication by n, 610
 Parseval’s Theorem, 610

12.3 Discrete-Time Fourier Transform of Periodic Sequences 611

12.4 Discrete Fourier Transform 617
 Shorthand Notation for the DFT, 620
 Frequency Resolution of the DFT, 621
 Validity of the DFT, 622
 Summary, 626

12.5 Fast Fourier Transform 627
 Decomposition-in-Time Fast Fourier Transform Algorithm, 627
 Decomposition-in-Frequency Fast Fourier Transform, 632
 Summary, 635
12.6 Applications of the Discrete Fourier Transform 635
 Calculation of Fourier Transforms, 635
 Convolution, 646
 Filtering, 653
 Correlation, 660
 Energy Spectral Density Estimation, 666
 Summary, 667

12.7 The Discrete Cosine Transform, 667
 Summary 672
 Problems 674

13 STATE VARIABLES FOR DISCRETE-TIME SYSTEMS 681

13.1 State-Variable Modeling 682
13.2 Simulation Diagrams 686
13.3 Solution of State Equations 692
 Recursive Solution, 692
 z-Transform Solution, 694
13.4 Properties of the State Transition Matrix 699
13.5 Transfer Functions 701
 Stability, 703
13.6 Similarity Transformations 704
 Properties, 708

 Summary 709
 Problems 710

APPENDICES 718

A. Integrals and Trigonometric Identities 718
 Integrals, 718
 Trigonometric Identities, 719
B. Leibnitz’s and L’Hôpital’s Rules 720
 Leibnitz’s Rule, 720
 L’Hôpital’s Rule, 721
C. Summation Formulas for Geometric Series 722
D. Complex Numbers and Euler’s Relation 723
 Complex-Number Arithmetic, 724
 Euler’s Relation, 727
 Conversion Between Forms, 728
E. Solution of Differential Equations 730
 Complementary Function, 730
 Particular Solution, 731
 General Solution, 732
 Repeated Roots, 732

F. Partial-Fraction Expansions 734

G. Review of Matrices 737
 Algebra of Matrices, 741
 Other Relationships, 742

H. Answers to Selected Problems 744

I. Signals and Systems References 762

INDEX 767
The basic structure and philosophy of the previous editions of *Signals, Systems, and Transforms* are retained in the fourth edition. New examples have been added and some examples have been revised to demonstrate key concepts more clearly. The wording of passages throughout the text has been revised to ease reading and improve clarity. In particular, we have revised the development of convolution and the Discrete Fourier Transform. Biographical information about selected pioneers in the fields of signal and system analysis has been added in the appropriate chapters. References have been removed from the end of each chapter and are collected in Appendix I.

Many end-of-chapter problems have been revised and numerous new problems are provided. Several of these new problems illustrate real-world concepts in digital communications, filtering, and control theory. The end-of-chapter problems have been organized so that multiple similar problems are provided. The answer to at least one of each set of similar problems is provided in Appendix H. The intent is to allow students to develop confidence by gaining immediate feedback about their understanding of new material and concepts. All MATLAB examples have been updated to ensure compatibility with the Student Version Release 14.

A companion web site at http://www.ee.washington.edu/class/SST_textbook/textbook.html contains sample laboratories, lecture notes for Chapters 1–7 and Chapters 9–12, and the MATLAB files listed in the textbook as well as several additional MATLAB files. It also contains a link to a second web site at http://www.ee.washington.edu/class/235dl/, which contains interactive versions of the lecture notes for Chapters 1–7. Here, students and professors can find worked-out solutions to all the examples in the lecture notes, as well as animated demonstrations of various concepts including transformations of continuous-time signals, properties of continuous-time systems (including numerous examples on time-invariance), convolution, sampling, and aliasing. Additional examples for discrete-time material will be added as they are developed.

This book is intended to be used primarily as a text for junior-level students in engineering curricula and for self-study by practicing engineers. It is assumed that
the reader has had some introduction to signal models, system models, and differential equations (as in, for example, circuits courses and courses in mathematics), and some laboratory work with physical systems.

The authors have attempted to consistently differentiate between signal and system models and physical signals and systems. Although a true understanding of this difference can be acquired only through experience, readers should understand that there are usually significant differences in performance between physical systems and their mathematical models.

We have attempted to relate the mathematical results to physical systems that are familiar to the readers (for example, the simple pendulum) or physical systems that students can visualize (for example, a picture in a picture for television). The descriptions of these physical systems, given in Chapter 1, are not complete in any sense of the word; these systems are introduced simply to illustrate practical applications of the mathematical procedures presented.

Generally, practicing engineers must, in some manner, validate their work. To introduce the topic of validation, the results of examples are verified, using different procedures, where practical. Many homework problems require verification of the results. Hence, students become familiar with the process of validating their own work.

The software tool MATLAB is integrated into the text in two ways. First, in appropriate examples, MATLAB programs are provided that will verify the computations. Then, in appropriate homework problems, the student is asked to verify the calculations using MATLAB. This verification should not be difficult because MATLAB programs given in examples similar to the problems are applicable. Hence, another procedure for verification is given. The MATLAB programs given in the examples may be downloaded from http://www.ee.washington.edu/class/SST_textbook/textbook.html. Students can alter data statements in these programs to apply them to the end-of-chapter problems. This should minimize programming errors. Hence, another procedure for verification is given. However, all references to MATLAB may be omitted, if the instructor or reader so desires.

Laplace transforms are covered in Chapter 7 and z-transforms are covered in Chapter 11. At many universities, one or both transforms are introduced prior to the signals and systems courses. Chapters 7 and 11 are written such that the material can be covered anywhere in the signals and systems course, or they can be omitted entirely, except for required references.

The more advanced material has been placed toward the end of the chapters wherever possible. Hence, this material may be omitted if desired. For example, Sections 3.7, 3.8, 4.6, 5.5, 7.9, 10.7, 12.6, 12.7, and 12.8 could be omitted by instructors without loss of continuity in teaching. Further, Chapters 8 and 13 can be skipped if a professor does not wish to cover state-space material at the undergraduate level.

The material of this book is organized into two principal areas: continuous-time signals and systems, and discrete-time signals and systems. Some professors prefer to cover first one of these topics, followed by the second. Other professors prefer to cover continuous-time material and discrete-time material simultaneously.
The authors have taken the first approach, with the continuous-time material covered in Chapters 2–8, and the discrete-time material covered in Chapters 9–13. The material on discrete-time concepts is essentially independent of the material on continuous-time concepts so that a professor or reader who desires to study the discrete-time material first could cover Chapters 9–11 and 13 before Chapters 2–8. The material may also be arranged such that basic continuous-time material and discrete-time material are intermixed. For example, Chapters 2 and 9 may be covered simultaneously and Chapters 3 and 10 may also be covered simultaneously.

In Chapter 1, we present a brief introduction to signals and systems, followed by short descriptions of several physical continuous-time and discrete-time systems. In addition, some of the signals that appear in these systems are described. Then a very brief introduction to MATLAB is given.

In Chapter 2, we present general material basic to continuous-time signals and systems; the same material for discrete-time signals and systems is presented in Chapter 9. However, as stated above, Chapter 9 can be covered before Chapter 2 or simultaneously with Chapter 2. Chapter 3 extends this basic material to continuous-time linear time-invariant systems, while Chapter 10 does the same for discrete-time linear time-invariant systems.

Presented in Chapters 4, 5, and 6 are the Fourier series and the Fourier transform for continuous-time signals and systems. The Laplace transform is then developed in Chapter 7. State variables for continuous-time systems are covered in Chapter 8; this development utilizes the Laplace transform.

The z-transform is developed in Chapter 11, with the discrete-time Fourier transform and the discrete Fourier transform presented in Chapter 12. However, Chapter 12 may be covered prior to Chapter 11. The development of the discrete-time Fourier transform and discrete Fourier transform in Chapter 12 assumes that the reader is familiar with the Fourier transform. State variables for discrete-time systems are given in Chapter 13. This material is independent of the state variables for continuous-time systems of Chapter 8.

In Appendix A, we give some useful integrals and trigonometric identities. In general, the table of integrals is used in the book, rather than taking the longer approach of integration by parts. Leibnitz’s rule for the differentiation of an integral and L’Hôpital’s rule for indeterminate forms are given in Appendix B and are referenced in the text where needed. Appendix C covers the closed forms for certain geometric series; this material is useful in discrete-time signals and systems. In Appendix D, we review complex numbers and introduce Euler’s relation, in Appendix E the solution of linear differential equations with constant coefficients, and in Appendix F partial-fraction expansions. Matrices are reviewed in Appendix G; this appendix is required for the state-variable coverage of Chapters 8 and 13. As each matrix operation is defined, MATLAB statements that perform the operation are given. Appendix H provides solutions to selected chapter problems so that students can check their work independently. Appendix I lists the references for the entire text, arranged by chapter.

This book may be covered in its entirety in two 3-semester-hour courses, or in quarter courses of approximately the equivalent of 6 semester hours. With the omission of appropriate material, the remaining parts of the book may be covered with